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Abstract

Stochastic discriminative EM (sdEM) is an
online-EM-type algorithm for discriminative
training of probabilistic generative models be-
longing to the natural exponential family. In
this work, we introduce and justify this algorithm
as a stochastic natural gradient descent method,
i.e. a method which accounts for the informa-
tion geometry in the parameter space of the sta-
tistical model. We show how this learning algo-
rithm can be used to train probabilistic genera-
tive models by minimizing different discrimina-
tive loss functions, such as the negative condi-
tional log-likelihood and the Hinge loss. The re-
sulting models trained by sdEM are always gen-
erative (i.e. they define a joint probability distri-
bution) and, in consequence, allows to deal with
missing data and latent variables in a principled
way either when being learned or when making
predictions. The performance of this method is
illustrated by several text classification problems
for which a multinomial naive Bayes and a latent
Dirichlet allocation based classifier are learned
using different discriminative loss functions.

1 INTRODUCTION

Online learning methods based on stochastic approxima-
tion theory [19] have been a promising research direction
to tackle the learning problems of the so-called Big Data
era [1, 10, 12]. Stochastic gradient descent (SGD) is prob-
ably the best known example of this kind of techniques,
used to solve a wide range of learning problems [9]. This
algorithm and other versions [27] are usually employed to
train discriminative models such as logistic regression or
SVM [10].

There also are some successful examples of the use of SGD
for discriminative training of probabilistic generative mod-
els, as is the case of deep belief networks [18]. However,

this learning algorithm cannot be used directly for the dis-
criminative training of general generative models. One of
the main reasons is that statistical estimation or risk min-
imization problems of generative models involve the so-
lution of an optimization problem with a large number of
normalization constraints [24], i.e. those which guarantee
that the optimized parameter set defines a valid probabilis-
tic model. Although successful solutions to this problem
have been proposed [16, 20, 24, 31], they are based on ad-
hoc methods which cannot be easily extended to other sta-
tistical models, and hardly scale to large data sets.

Stochastic approximation theory [19] has also been used
for maximum likelihood estimation (MLE) of probabilistic
generative models with latent variables, as is the case of the
online EM algorithm [13, 29]. This method provides effi-
cient MLE estimation for a broad class of statistical mod-
els (i.e. exponential family models) by sequentially updat-
ing the so-called expectation parameters. The advantage
of this approach is that the resulting iterative optimization
algorithm is fairly simple and amenable, as it does not in-
volve any normalization constraints.

In this paper we show that the derivation of Sato’s online
EM [29] can be extended for the discriminative learning
of generative models by introducing a novel interpretation
of this algorithm as a natural gradient algorithm [3]. The
resulting algorithm, called stochastic discriminative EM
(sdEM), is an online-EM-type algorithm that can train gen-
erative probabilistic models belonging to the natural expo-
nential family using a wide range of discriminative loss
functions, such as the negative conditional log-likelihood
or the Hinge loss. In opposite to other discriminative learn-
ing approaches [24], models trained by sdEM can deal with
missing data and latent variables in a principled way either
when being learned or when making predictions, because
at any moment they always define a joint probability distri-
bution. sdEM could be used for learning using large scale
data sets due to its stochastic approximation nature and, as
we will show, because it allows to compute the natural gra-
dient of the loss function with no extra cost [3]. Moreover,
if allowed by the generative model and the discriminative
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loss function, the presented algorithm could potentially be
used interchangeably for classification or regression or any
other prediction task. But in this initial work, sdEM is only
experimentally evaluated in classification problems.

The rest of this paper is organized as follows. Section 2
provides the preliminaries for the description of the sdEM
algorithm, which is detailed in Section 3. A brief exper-
imental evaluation is given in Section 4, while Section 5
contains the main conclusions of this work.

2 PRELIMINARIES

2.1 MODEL AND ASSUMPTIONS

We consider generative statistical models for prediction
tasks, where Y denotes the random variable (or the vector-
value random variable) to be predicted, X denotes the pre-
dictive variables, and y? denotes a prediction, which is
made according to y? = argmaxy p(y, x|θ).

Assumption 1. The generative data model belongs to a
natural exponential family

p(y, x|θ) ∝ exp(〈s(y, x), θ〉 −Al(θ))

where θ is the so-called natural parameter which belongs
to the so-called natural parameter space Θ ∈ <K , s(y, x)
is the vector of sufficient statistics belonging to a convex
set S ⊆ <K , 〈·, ·〉 denotes the dot product and Al is the log
partition function.

Assumption 2. We are given a conjugate prior distribution
p(θ|α) of the generative data model

p(θ|α) ∝ exp(〈s(θ), α〉 −Ag(α))

where the sufficient statistics are s(θ) = (θ,−Al(θ)) and
the hyperparameter α has two components (ᾱ, ν). ν is a
positive scalar and ᾱ is a vector also belonging to S [6].

2.2 DUAL PARAMETERIZATION AND
ASSUMPTIONS

The so-called expectation parameter µ ∈ S can also be
used to parameterize probability distributions of the natu-
ral exponential family. It is a dual set of the model param-
eter θ [2]. This expectation parameter µ is defined as the
expected vector of sufficient statistics with respect to θ:

µ , E [s(y, x)|θ] =
∫
s(y, x)p(y, x|θ)dydx

= ∂Al(θ)/∂θ
(1)

The transformation between θ and µ is one-to-one: µ is a
dual set of the model parameter θ [2]. Therefore, Equa-
tion (1) can be inverted as: θ = θ(µ). That is to say, for
each θ ∈ Θ we always have an associated µ ∈ S and both
parameterize the same probability distribution.

For obtaining the natural parameter θ associated to an ex-
pectation parameter µ, we need to make use of the negative
of the entropy,

H(µ) ,
∫
p(y, x|θ(µ)) ln p(y, x|θ(µ))dydx

= supθ∈Θ〈µ, θ〉 −Al(θ)
(2)

Using the above function, the natural parameter θ can be
explicitly expressed as

θ = θ(µ) = ∂H(µ)/∂µ (3)

Equations (1), (2), (3) define the Legendre-Fenchel trans-
form.

Another key requirement of our approach is that it should
be possible to compute the transformation from µ to θ in
closed form:

Assumption 3. The transformation from the expectation
parameter µ to the natural parameter θ, which can be ex-
pressed as

θ(µ) = argmax
θ∈Θ
〈µ, θ〉 −Al(θ) (4)

is available in closed form.

The above equation is also known as the maximum likeli-
hood function, because θ( 1

n

∑n
i=1 s(yi, xi)) gives the max-

imum likelihood estimation θ? for a data set with n obser-
vations {(y1, x1), . . . , (yn, xn)}.
For later convenience, we show the following relations be-
tween the Fisher Information matrices I(θ) and I(µ) for
the probability distributions p(y, x|θ) and p(y, x|θ(µ)), re-
spectively [23]:

I(θ) =
∂2Al(θ)

∂θ∂θ
=
∂µ

∂θ
= I(µ)−1 (5)

I(µ) =
∂2H(µ)

∂µ∂µ
=
∂θ

∂µ
= I(θ)−1 (6)

2.3 THE NATURAL GRADIENT

Let W = {w ∈ <K} be a parameter space on which the
function L(w) is defined. When W is a Euclidean space
with an orthonormal coordinate system, the negative gradi-
ent points in the direction of steepest descent. That is, the
negative gradient−∂L(w)/∂w points in the same direction
as the solution to:

argmin
dw

L(w + dw) subject to ||dw||2 = ε2 (7)

for sufficiently small ε, where ||dw||2 is the squared length
of a small increment vector dw connecting w and w +
dw. This justifies the use of the classical gradient descent
method for finding the minimum of L(w) by taking steps
(of size ρ) in the direction of the negative gradient:

wt+1 = wt − ρ
∂L(wt)

∂w
(8)
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However, whenW is a Riemannian space [4], there are no
orthonormal linear coordinates, and the squared length of
vector dw is defined by the following equation,

||dw||2 =
∑

ij

gij(w)dwidwj (9)

where the K ×K matrix G = (gij) is called the Rieman-
nian metric tensor, and it generally depends on w. G re-
duces to the identity matrix in the case of the Euclidean
space [4].

In a Riemannian space, the steepest descent direction is not
anymore the traditional gradient. That is, −∂L(w)/∂w is
not the solution of Equation (7) when the squared length
of the distance of dw is defined by Equation (9). Amari
[3] shows that this solution can be computed by pre-
multiplying the traditional gradient by the inverse of the
Riemannian metric G−1,

Theorem 1. The steepest descent direction or the natural
gradient of L(w) in a Riemannian space is given by

− ∂̃L(w)

∂̃w
= −G−1(w)

∂L(w)

∂w
(10)

where ∂̃L(w)/∂̃w denotes the natural gradient.

As argued in [3], in statistical estimation problems we
should used gradient descent methods which account for
the natural gradient of the parameter space, as the parame-
ter space of a statistical model (belonging to the exponen-
tial family or not) is a Riemannian space with the Fisher
information matrix of the statistical model I(w) as the ten-
sor metric [2], and this is the only invariant metric that must
be given to the statistical model [2].

2.4 SATO’S ONLINE EM ALGORITHM

Sato’s online EM algorithm [29] is used for maximum like-
lihood estimation of missing data-type statistical models.
The model defines a probability distribution over two ran-
dom or vector-valued variables X and Z, and is assumed
to belong to the natural exponential family:

p(z, x|θ) ∝ exp(〈s(z, x), θ〉 −Al(θ))

where (z, x) denotes a so-called complete data event. The
key aspect is that we can only observe x, since z is an unob-
servable event. In consequence, the loss function `(x, θ)1

is defined by marginalizing z: `(x, θ) = − ln
∫
p(z, x)dz.

The online setting assumes the observation of a non-finite
data sequence {(xt)}t≥0 independently drawn according
to the unknown data distribution π. The objective function
that EM seeks to minimize is given by the following expec-
tation: L(θ) = E [`(x, θ)|π].

1We derive this algorithm in terms of minimization of a loss
function to highlight its connection with sdEM.

Sato [29] derived the stochastic updating equation of online
EM by relying on the free energy formulation, or lower
bound maximization, of the EM algorithm [22] and on a
discounting averaging method. Using our own notation,
this updating equation is expressed as follows,

µt+1 = (1− ρt)µt + ρtEz[s(z, xt|θ(µt)]
= µt + ρt (Ez[s(z, xt|θ(µt)]− µt)

= µt + ρt
∂`(xt, θ(µt))

∂θ
(11)

where Ez[s(z, xt|θ(µt)] denotes the expected sufficient
statistics, Ez[s(z, xt|θ(µt)] =

∫
s(z, xt)p(z|xt, θ(µt))dz.

He proved the convergence of the above iteration method
by casting it as a second order stochastic gradient descent
using the following equality,

∂`(x, θ)

∂θ
=
∂µ

∂θ

∂`(x, θ(µ))

∂µ
= I(µ)−1 ∂`(x, θ(µ))

∂µ
(12)

This equality is obtained by firstly applying the chain rule,
followed by the equality shown in Equation (5). It shows
that online EM is equivalent to a stochastic gradient descent
with I(µt)

−1 as coefficient matrices [9].

Sato noted that that the third term of the equality in Equa-
tion (12) resembles a natural gradient (see Theorem 1), but
he did not explore the connection. But the key insights of
the above derivation, which were not noted by Sato, is that
Equation (12) is also valid for other loss functions different
from the marginal log-likelihood; and that the convergence
of Equation (11) does not depend on the formulation of the
EM as a “lower bound maximization” method [22].

3 STOCHASTIC DISCRIMINATIVE EM

3.1 THE sdEM ALGORITHM

We consider the following supervised learning setup. Let
us assume that we are given a data set D with n ob-
servations {(y1, x1), . . . , (yn, xn)}. We are also given a
discriminative loss function2 `(yi, xi, θ). For example, it
could be the negative conditional log-likelihood (NCLL)
`(yi, xi, θ) = − ln p(yi, xi|θ) + ln

∫
p(y, xi|θ)dy =

− ln p(yi|xi, θ). Our learning problem consists in minimiz-
ing the following objective function:

L(θ) =
n∑

i=1

`(yi, xi, θ)− ln p(θ|α)

= E [`(y, x, θ)|π]− 1

n
ln p(θ|α) (13)

where π is now the empirical distribution of D and
E [`(y, x, θ)|π] the empirical risk. Although the above

2The loss function is assumed to satisfy the mild conditions
given in [9]. E.g., it can be a non-smooth function, such as the
Hinge Loss.
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loss function is not standard in the machine learning lit-
erature, we note that when ` is the negative log-likelihood
(NLL), we get the classic maximum a posterior estimation.
This objective function can be seen as an extension of this
framework.

sdEM is presented as a generalization of Sato’s online EM
algorithm for finding the minimum of an objective function
in the form of Equation (13) (i.e. the solution to our learn-
ing problem). The stochastic updating equation of sdEM
can be expressed as follows,

µt+1 = µt − ρtI(µt)
−1 ∂

¯̀(yt, xt, θ(µt))

∂µ
(14)

where (yt, xt) denotes the t-th sample, randomly generated
from π, and the function ¯̀ has the following expression:
¯̀(yt, xt, θ(µt)) = `((yt, xt, θ(µt)) + 1/n ln p(θ(µt)). We
note that this loss function satisfies the following equality,
which is the base for a stochastic approximation method
[19], E

[
¯̀(yt, xt, θ(µ))|π

]
= L(θ(µ)).

Similarly to Amari’s natural gradient algorithm [3], the
main problem of sdEM formulated as in Equation (14) is
the computation of the inverse of the Fisher information
matrix at each step, which becomes even prohibitive for
large models. The following result shows that this can be
circumvented when we deal with distributions of the natu-
ral exponential family:
Theorem 2. In a natural exponential family, the natural
gradient of a loss function with respect to the expectation
parameters equals the gradient of the loss function with
respect to the natural parameters,

I(µ)−1 ∂
¯̀(y, x, θ(µ))

∂µ
=
∂ ¯̀(y, x, θ)

∂θ

Sketch of the proof. We firstly need to prove that I(µ) is
a valid Riemannian tensor metric and, hence, the expecta-
tion parameter space has a Riemanian structure defined by
the metric I(µ) and the definition of the natural gradient
makes sense. This can be proved by the invariant property
of the Fisher information metric to one-to-one reparame-
terizations or, equivalently, transformations in the system
of coordinates [2, 4]. I(µ) is a Riemannian metric because
it is the Fisher information matrix of the reparameterized
model p(y, x|θ(µ)), and the reparameterization is one-to-
one, as commented in Section 2.2.

The equality stated in the theorem follows directly from
Sato’s derivation of the online EM algorithm (Equation
(12)). This derivation shows that we can avoid the com-
putation of I(µ)−1 by using the natural parameters instead
of the expectation parameters and the function θ(µ).

Theorem 1 simplifies the sdEM’s updating equation to,

µt+1 = µt − ρt
∂ ¯̀(yt, xt, θ(µt))

∂θ
(15)

sdEM can be interpreted as a stochastic gradient descent
algorithm iterating over the expectation parameters and
guided by the natural gradient in this Riemannian space.

Algorithm 1 Stochastic Discriminative EM (sdEM)
Require: D is randomly shuffled.

1: µ0 = ᾱ; (initialize according to the prior)
2: θ0 = θ(µ0);
3: t = 0;
4: repeat
5: for i = 1, . . . , n do
6: E-Step: µt+1 = µt − 1

(1+λt)
∂ ¯̀(yi,xi,θt)

∂θ ;

7: Check-Step: µt+1 = Check(µt+1,S);

8: M-Step: θt+1 = θ(µt+1);
9: t = t+ 1;

10: end for
11: until convergence
12: return θ(µt);

An alternative proof to Theorem 2 based on more recent
results on information geometry has been recently given in
[25]. The results of that work indicate that sdEM could also
be interpreted as a mirror descent algorithm with a Breg-
man divergence as a proximitiy measure. It is beyond the
scope of the paper to explore this relevant connection.

3.2 CONVERGENCE OF sdEM

In this section we do not attempt to give a formal proof
of the convergence of sdEM, since very careful technical
arguments would be needed for this purpose [9]. We simply
go through the main elements that define the convergence
of sdEM as an stochastic approximation method [19].

According to Equation (14), sdEM can be seen as a
stochastic gradient descent method with the inverse of the
Fisher information matrix I(µ)−1 as a coefficient matrix
[9]. As we are dealing with natural exponential families,
these matrices are always positive-definite. Moreover, if
the gradient ∂ ¯̀(y, x, θ)/∂θ can be computed exactly (in
Section 3.4 we discuss what happens when this is not pos-
sible), from Theorem 2, we have that it is an unbiased es-
timator of the natural gradient of the L(θ(µ)) defined in
Equation 13,

E

[
∂ ¯̀(y, x, θ)

∂θ
|π
]

= I(µ)−1 ∂L(θ(µ))

∂µ
(16)

However, one key difference in terms of convergence be-
tween online EM and sdEM can be seen in Equation (11):
µt+1 is a convex combination between µt and the expected
sufficient statistics. Then, µt+1 ∈ S during all the itera-
tions. As will be clear in the next section, we do not have
this same guarantee in sdEM, but we can take advantage
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Table 1: sdEM updating equations for fully observed data (Section 3.3) .

Loss sdEM equation

NLL µt+1 = (1− ρt(1 + ν
n ))µt + ρt

(
s(yt, xt) + 1

n ᾱ
)

NCLL µt+1 = (1− ρt νn )µt + ρt
(
s(yt, xt)− Ey[s(y, xt)|θ(µt)] + 1

n ᾱ
)

Hinge µt+1 = (1− ρt νn )µt + ρt

{
1
n ᾱ if ln p(yt,xt|θ)

p(ȳt,xt|θ) > 1

s(yt, xt)− s(ȳt, xt) + 1
n ᾱ otherwise

where ȳt = argmaxy 6=yt p(y, xt|θ)

of the log prior term of Equation (13) to avoid this prob-
lem. This term plays a dual role as both “regularization”
term and log-barrier function [30] i.e. a continuous func-
tion whose value increases to infinity as the parameter ap-
proaches the boundary of the feasible region or the sup-
port of p(θ(µ)|α) 3. Then, if the step sizes ρt are small
enough (as happens near convergence), sdEM will always
stays in the feasible region S, due to the effect of the log
prior term. The only problem is that, in the initial iterations,
the step sizes ρt are large, so one iteration can jump out of
the boundary of S. The method to avoid that depends on
the particular model, but for the models examined in this
work it seems to be a simple check in every iteration. For
example, as we will see in the experimental section when
implementing a multinomial Naive Bayes, we will check at
every iteration that each sufficient statistic or “word count”
is always positive. If a “word count” is negative at some
point, we will set it to a very small value. As mentioned
above, this does not hurt the convergence of sdEM because
in the limit this problem disappears due the effect of the
log-prior term.

The last ingredient required to assess the convergence of
a stochastic gradient descent method is to verify that the
sequence of step sizes satisfies:

∑
ρt =∞, ∑

ρ2
t <∞.

So, if the sequence (µt)t≥0 converges, it will probably con-
verge to the global minimum (µ?, θ? = θ(µ?)) if L(θ) is
convex, or to a local minimum if L(θ) is not convex [9].

Finally, we give an algorithmic description of sdEM in Al-
gorithm 1. Following [11], we consider steps sizes of the
form ρt = (1 + λt)−1, where λ is a positive scalar4. As
mentioned above, the “Check-Step” is introduced to guar-
antee that µt is always in S. Like the online EM algo-
rithm [29, 13], Algorithm 1 resembles the classic expecta-

3The prior p would need to be suitably chosen.
4Our experiments suggest that trying λ ∈ {1, 0.1, 0.01,

0.001, . . .} suffices for obtaining a quick convergence.

tion maximization algorithm [15] since, as we will see in
the next section, the gradient is computed using expected
sufficient statistics. Assumption 3 guarantees that the max-
imization step can be performed efficiently. This step dif-
ferentiates sdEM from classic stochastic gradient descent
methods, where such a computation does not exist.

3.3 DISCRIMINATIVE LOSS FUNCTIONS

As we have seen so far, the derivation of sdEM is com-
plete except for the definition of the loss function. We will
discuss now how two well known discriminative loss func-
tions can be used with this algorithm.

Negative Conditional Log-likelihood (NCLL)

As mentioned above, this loss function is defined as fol-
lows:

`CL(yt, xt, θ) = − ln p(yt, xt|θ) + ln

∫
p(y, xt|θ)dy

And its gradient is computed as

∂`CL(yt, xt, θ)

∂θ
= −s(yt, xt) + Ey[s(y, xt)|θ]

where the sufficient statistic s(yt, xt) comes from the
gradient of the ln p(yt, xt|θ) term in the NCLL loss,
and the expected sufficient statistic Ey[s(y, xt)|θ] =∫
s(y, xt)p(y|xt, θ)dy, comes from the gradient of the

ln
∫
p(y, xt|θ)dy term in the NCLL loss. As mentioned

above, the computation of the gradient is similar to the ex-
pectation step of the classic EM algorithm.

The iteration equation of sdEM for the NCLL loss is de-
tailed in Table 1. We note that in the case of multi-class pre-
diction problems the integrals of the updating equation are
replaced by sums over the different classes of the class vari-
able Y . We also show the updating equation for the nega-
tive log-likelihood (NLL) loss for comparison purposes.
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Table 2: sdEM updating equations for partially observed data (Section 3.4)

Loss sdEM equation

NLL µt+1 = (1− ρt(1 + ν
n ))µt + ρt

(
Ez[s(yt, z, xt)|θ(µt)] + 1

n ᾱ
)

NCLL µt+1 = (1− ρt νn )µt + ρt
(
Ez[s(yt, z, xt)|θ(µt)]− Eyz[s(y, z, xt)|θ(µt)] + 1

n ᾱ
)

Hinge µt+1 = (1− ρt νn )µt + ρt





1
n ᾱ if ln

∫
p(yt,z,xt|θ)dz∫
p(ȳt,z,xt|θ)dz > 1

Ez[s(yt, z, xt)|θ(µt)]
−Ez[s(ȳt, z, xt)|θ(µt)] + 1

n ᾱ
otherwise

where ȳt = argmaxy 6=yt
∫
p(y, z, xt|θ)dz

The Hinge loss

Unlike the previous loss which is valid for continuous and
discrete (and vector-valued) predictions, this loss is only
valid for binary or multi-class classification problems.

Margin-based loss functions have been extensively used
and studied by the machine learning community for binary
and multi-class classification problems [5]. However, in
our view, the application of margin-based losses (different
from the negative conditional log-likelihood) for discrimi-
native training of probabilistic generative models is scarce
and based on ad-hoc learning methods which, in general,
are quite sophisticated [24]. In this section, we discuss how
sdEM can be used to minimize the empirical risk of one of
the most used margin-based losses, the Hinge loss, in bi-
nary and multi-class classification problems. But, firstly,
we discuss how Hinge loss can be defined for probabilistic
generative models.

We build on LeCun et al.’s ideas [21] about energy-based
learning for prediction problems. LeCun et al. [21] define
the Hinge loss for energy-based models as follows,

max(0, 1− (E(ȳt, xt, w)− E(yt, xt, w))

where E(·) is the energy function parameterized by a pa-
rameter vector w, E(yt, xt, w) is the energy associated
to the correct answer yt and E(ȳt, xt, w) is the energy
associated to the most offending incorrect answer, ȳt =
argminy 6=yt E(y, xt, w). Predictions y? are made using
y? = argminy E(y, xt, w

?) when the parameter w? that
minimizes the empirical risk is found.

In our learning settings we consider the minus logarithm
of the joint probability, − ln p(yt, xt|θ), as an energy func-
tion. In consequence, we define the hinge loss as follows

`hinge(yt, xt, θ) = max(0, 1− ln
p(yt, xt|θ)
p(ȳt, xt|θ)

) (17)

where ȳt denotes here too the most offending incorrect an-
swer, ȳt = argmaxy 6=yt p(y, xt|θ).

The gradient of this loss function can be simply computed
as follows

∂`hinge(yt, xt, θ)

∂θ
=





0 if ln p(yt,xt|θ)
p(ȳt,xt|θ) > 1

−s(yt, xt) + s(ȳt, xt) otherwise

and the iteration equation for minimizing the empirical risk
of the Hinge loss is also given in Table 1.

3.4 PARTIALLY OBSERVABLE DATA

The generalization of sdEM to partially observable data
is straightforward. We denote by Z the vector of non-
observable variables. sdEM will handle statistical models
which define a probability distribution over (y, z, x) which
belongs to the natural exponential family (Assumption 1).
Assumption 2 and 3 remain unaltered.

The tuple (y, z, x) will denote the complete event or com-
plete data, while the tuple (y, x) is the observed event or the
observed data. So we assume that our given data setD with
n observations is expressed as {(y1, x1), . . . , (yn, xn)}. So
sdEM’s Equation (14) and (15) are the same, with the only
difference that the natural gradient is now defined using the
inverse of the Fisher information matrix for the statistical
model p(y, z, x|θ(µ)). The same happens for Theorem 2.

The NCLL loss and the Hinge loss are equally de-
fined as in Section 3.3, with the only difference that
the computation of p(yt, xt|θ) and p(xt|θ) requires
marginalization over z, p(yt, xt|θ) =

∫
p(yt, z, xt|θ)dz,

p(xt|θ) =
∫
p(y, z, xt|θ)dydz. The updating equa-

tions for sdEM under partially observed data for the
NCLL and Hinge loss are detailed in Table 2. New
expected sufficient statistics need to be computed,
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Figure 1: Toy example (Section 4.1). The result using the NLL loss (i.e. MLE estimation) is plotted with dashed lines
which represent the densities p(y = k)N(x, µ(k), σ(k)) for both classes (i.e. when the red line is higher than the blue
line we predict the red class and vice versa). The estimated prediction accuracy of the MLE model is 78.6%. Solid lines
represent the same estimation but using the NCLL and the Hinge loss. Their estimated prediction accuracies are 90.4%
and 90.6%, respectively.
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Ez[s(yt, z, xt)|θ] =
∫
s(yt, z, xt)p(z|yt, xt, θ)dz and

Eyz[s(y, z, xt)|θ] =
∫
s(y, z, xt)p(y, z|xt, θ)dydz. As

previously, we also show the updating equation for the neg-
ative log-likelihood (NLL) loss for comparison purposes.

3.5 sdEM AND APPROXIMATE INFERENCE

For many interesting models [8], the computation of the ex-
pected sufficient statistics in the iteration equations shown
in Table 1 and 2 cannot be computed in closed form.
This is not a problem as far as we can define unbiased
estimators for these expected sufficient statistics, since
the equality of Equation (16) still holds. As it will be
shown in the next section, we use sdEM to discrimina-
tively train latent Dirichlet allocation (LDA) models [8].
Similarly to [26], for this purpose we employ collapsed
Gibbs sampling to compute the expected sufficient statis-
tics, Ez[s(yt, z, xt)|θ], as it guarantees that at convergence
samples are i.i.d. according to p(z|yt, xt, θ).

4 EXPERMINTAL ANALYSIS

4.1 TOY EXAMPLE

We begin the experimental analysis of sdEM by learning
a very simple Gaussian naive Bayes model composed by
a binary class variable Y and a single continuous predic-
tor X . Hence, the conditional density of the predictor
given the class variable is assumed to be normally dis-
tributed. The interesting part of this toy example is that
the training data is generated by a different model: π(y =
−1) = 0.5, π(x|y = −1) ∼ N(0, 3) and π(x|y = 1) ∼

0.8 · N(−5, 0.1) + 0.2 · N(5, 0.1). Figure 1 shows the
histogram of the 30,000 samples generated from the π dis-
tribution. The result is a mixture of 3 Gaussians, one in the
center with a high variance associated to y = −1 and two
narrows Gaussians on both sides associated to y = 1.

sdEM can be used by considering 6 (non-minimal) suffi-
cient statistics: N (−1) and N (1) as “counts” associated to
both classes, respectively; S(−1) and S(1) as the “sum” of
the x values associated to classes y = −1 and y = 1, re-
spectively; and V (−1) and V (1) as the “sum of squares”
of the x values for each class. We also have five param-
eters which are computed from the sufficient statistics as
follows: Two for the prior of class p(y = −1) = p(−1) =
N (−1)/(N (−1) +N (1)) and p(1) = N (1)/(N (−1) +N (1));
and four for the two Gaussians which define the condi-
tional of X given Y , µ(−1) = S(−1)/N (−1), σ(−1) =√
V (−1)/N (−1) − (S(−1)/N (−1))2, and equally for µ(1)

and σ(1).

The sdEM’s updating equations for the NCLL loss can be
written as follows

N
(k)
t+1 = N

(k)
t + ρt(I[yt = k]− pt(k|xt)) +

ρt
n

S
(k)
t+1 = (1− ρt

n
)S

(k)
t + ρtxt (I[yt = k]− pt(k|xt))

V
(k)
t+1 = (1− ρt

n
)V

(k)
t + ρtx

2
t (I[yt = k]− pt(k|xt)) +

ρt
n

where k indexes both classes, k ∈ {−1, 1}, I[·] denotes
the indicator function, pt(k|xt) is an abbreviation of p(y =
k|xt, θt), and θt is the parameter vector computed from the
sufficient statistics at the t-th iteration.
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Figure 2: Convergence trade-off of the Hinge loss ver-
sus the NCLL loss and the perplexity for a multinomial
naive Bayes model trained minimizing the Hinge loss us-
ing sdEM. Circle-lines, triangle-lines and cross-lines corre-
spond to the results with 20NewsGroup, Cade and Reuters-
R52 datasets, respectively.
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a multinomial naive Bayes model trained minimizing the
NCLL loss (NCLL-MNB) and the Hinge loss (Hinge-
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with 20NewsGroup, Cade and Reuters-R52 datasets, re-
spectively. Same for Hinge-MNB. The three blue and the
three red solid lines detail the accuracy of logistic regres-
sion and SVM, respectively. The three dashed black lines
detail the accuracy of plain MNB with a Laplace prior.
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Similarly, the sdEM’s updating equations for the Hinge loss
can be written as follows,

N
(k)
t+1 = N

(k)
t + kytρtI[ln

pt(yt|xt)
pt(ȳt|xt)

< 1] +
ρt
n

S
(k)
t+1 = (1− ρt

n
)S

(k)
t + kytρtxtI[ln

pt(yt|xt)
pt(ȳt|xt)

< 1]

V
(k)
t+1 = (1− ρt

n
)V

(k)
t + kytρtx

2
t I[ln

pt(yt|xt)
pt(ȳt|xt)

< 1] +
ρt
n

where the product kyt is introduced in the updating equa-
tions to define the sign of the sum, and the indicator func-
tion I[·] defines when the hinge loss is null.

In the above set of equations we have considered as a con-
jugate prior for the Gaussians a three parameter Normal-
Gamma prior, ν = 1 and ᾱ1 = 0 for S(k) and ᾱ2 = 1 for
V (k) [6, page 268], and a Beta prior with ν = 0 and ᾱ = 1
for N (k). We note that these priors assign zero probabil-
ity to “extreme” parameters p(k) = 0 (i.e. N (k) = 0) and
σ(k) = 0 (i.e. V (k)/N (k) − (S(k)/N (k))2 = 0).

Finally, the“Check-step” (see Algorithm 1) performed be-
fore computing θt+1, and which guarantees that all suffi-
cient statistics are correct, is implemented as follows:

N
(k)
t+1 = max(N

(k)
t+1,

ρt
n

)

V
(k)
t+1 = max(V

(k)
t+1,

(S
(k)
t+1)2

N
(k)
t+1

+
ρt
n

)

I.e., when the N (k) “counts” are negative or too small or
when the V (k) values lead to negative or null deviations
σ(k) ≤ 0, they are fixed with the help of the prior term.

The result of this experiment is given in Figure 1 and
clearly shows the different trade-offs of both loss functions
compared to maximum likelihood estimation. It is interest-
ing to see how a generative model which does not match
the underlying distribution is able to achieve a pretty high
prediction accuracy when trained with a discrimintaive loss
function (using the sdEM algorithm).

4.2 sdEM FOR TEXT CLASSIFICATION

Next, we briefly show how sdEM can be used to discrimi-
natively train some generative models used for text classifi-
cation, such as multinomial naive Bayes and a similar clas-
sifier based on latent Dirichlet allocation models [8]. Sup-
plementary material with full details of these experiments
and the Java code used in this evaluation can be download
at: http://sourceforge.net/projects/sdem/

Multinomial Naive Bayes (MNB)

MNB assumes that words in documents with the same class
or label are distributed according to an independent multi-
nomial distribution. sdEM can be easily applied to train this
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Figure 4: Convergence of the classification accuracy of
LDA classification models trained by sdEM using different
loss functions (NLL, NCLL and Hinge) over 10 different
random initializations. The two dashed lines and the single
solid line detail the maximum, minimum and mean accu-
racy of sLDA, respectively, over 10 random initializations.
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model. The sufficient statistics are the “prior class counts”
and the “word counts” for each class. The updating equa-
tions and the check step are the same as those of N (k)

t in
the previous toy example. Parameters of the MNB are com-
puted simply through normalization operations. Two dif-
ferent conjugate Dirichlet distributions were considered: A
“Laplace prior” where ᾱi = 1; and a ”Log prior” where
ᾱi = “logarithm of the number of words in the corpus”.
We only report analysis for “Laplace prior” in the case of
NCLL loss and for “Log prior” in the case of Hinge loss.
Other combinations show similar results, although NCLL
was more sensitive to the chosen prior.

We evaluate the application of sdEM to MNB with
three well-known multi-class text classification prob-
lems: 20Newsgroup (20 classes), Cade (12 classes) and
Reuters21578-R52 (52 classes). Data sets are stemmed.
Full details about the data sets and the train/test data sets
split used in this evaluation can be found in [14].

Figure 2 shows the convergence behavior of sdEM with
λ =1e-05 when training a MNB by minimizing the Hinge
loss (Hinge-MNB). In this figure, we plot the evolution of
the Hinge loss but also the evolution of the NCLL loss
and the normalized perplexity (i.e. the perplexity measure
[8] divided by the number of training documents) at each
epoch. We can see that there is a trade-off between the dif-
ferent losses. E.g., Hinge-MNB decreases the Hinge loss
(as expected) but tends to increase the NCLL loss, while it

only decreases perplexity at the very beginning.

Figure 3 displays the evolution of the classification accu-
racy of two MNBs trained minimizing the NCLL loss and
the Hinge loss using sdEM. We compare them to: the stan-
dard MNB with a “Laplace prior”; the L2-regularized Lo-
gistic Regression; and the primal L2-regularized SVM. The
two later methods were taken from the Liblinear toolkit
v.18 [17]. As can be seen, sdEM is able to train simple
MNB models with a performance very close to that pro-
vided by highly optimized algorithms.

Latent Dirichlet Allocation (LDA)

We briefly show the results of sdEM when discriminatively
training LDA models. We define a classification model
equal to MNB, but where the documents of the same class
are now modeled using an independent LDA model. We
implement this model by using, apart from the “prior class
counts”, the standard sufficient statistics of the LDA model,
i.e. “words per hidden topic counts”, associated to each
class label. Similarly to [26], we used an online Collapsed
Gibbs sampling method to obtain, at convergence, unbiased
estimates of the expected sufficient statistics (see Table 2).

This evaluation was carried out using the standard train/test
split of the Reuters21578-R8 (8 classes) and web-kb (4
classes) data sets [14], under the same preprocessing than
in the MNB’s experiments. Figure 4 shows the results
of this comparison using 2-topics LDA models trained
with the NCLL loss (NCLL-LDA), the Hinge loss (Hinge-
LDA), and also the NLL loss (NLL-LDA) following the
updating equations of Table 2. We compared these results
with those returned by supervised-LDA (sLDA) [7] using
the same prior, but this time with 50 topics because less
topics produced worse results. We see again how a sim-
ple generative model trained with sdEM outperforms much
more sophisticated models.

5 CONCLUSIONS

We introduce a new learning algorithm for discriminative
training of generative models. This method is based on
a novel view of the online EM algorithm as a stochastic
natural gradient descent algorithm for minimizing general
discriminative loss functions. It allows the training of a
wide set of generative models with or without latent vari-
ables, because the resulting models are always generative.
Moreover, sdEM is comparatively simpler and easier to im-
plement (and debug) than other ad-hoc approaches.
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