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Abstract — We outline the challenges of situation 
awareness with early and accurate recognition of traffic 
maneuvers and how to assess them. This includes also an 
overview of the available data and derived situation features, 
handling of data uncertainties, modelling and the approach 
for maneuver recognition. An efficient and effective solution, 
meeting the automotive requirements, is successfully 
deployed and tested on a prototype car. Test driving results 
show that earlier recognition of intended maneuver is feasible 
on average 1 second (and up to 6.72 s) before the actual lane 
marking crossing. The even earlier maneuver recognition is 
dependent on the earlier recognition of surrounding vehicles. 

Keywords – Bayesian networks, massive data streams 

I. INTRODUCTION

A highway, typically providing several traffic lanes, is 
characterized by complex scenes with many vehicles. 
Reliable situation assessment requires multi-sensor fusion 
and management of uncertainty in order to interpret 
accurately the traffic environment. To reduce the risk of 
accidents and congestions, an autonomous system must 
analyze and be aware of possible hazards of a driving 
situation. This includes: correctly recognizing intended 
maneuvers of all surrounding vehicles at an early stage and 
using this information to enable corrective actions like 
braking or steering, thus helping to avoid or mitigate 
potential collisions. Situational awareness and recognition 
of traffic maneuvers are key elements of modern driver 
assistance and autonomous driving systems, [1]-[14]. 

A probabilistic approach, using Object-Oriented 
Bayesian networks (OOBNs) for maneuver recognition has 
been proposed in [2] and [6]. It is based on the own (ego) 
vehicle dynamics, its driving path in relations to the lane 
markings and/or surrounding vehicles, to evaluate the 
vehicles’ relevance as possible target objects and to 
recognize earlier maneuvers in real traffic. In addition to 
the data from in-vehicle sensors, including both the vehicle 
kinematics and vehicle surround dynamics, [7] also uses 
visual data from multiple perspectives to characterize lane 
changes. In [2], we use pairwise vehicle-vehicle relations; 
as far as the sensors can percept the surrounding objects.  

__________________________________________ 
*AMIDST (Analysis of Massive Data Streams) is a project, which has 

received funding from the European Union’s 7th Framework Programme 
for research, technological development and demonstration under grant 
agreement no 619209. 

In [10] an approach, based on Hidden Markov Models 
computes the driver's intent on lane change and/or potential 
risk of accidents. [10] studied the driver decisions whether 
is safer to change lane in front of  a faster car closing the 
gap or to brake for keeping a safe distance to a slower car 
in front, by evaluating the time-to-collision (TTC). We 
have used similar features in the safety model (in section 
III.A) to infer the intention on lane change for the situations 
shown in Fig. 1, utilizing the relative longitudinal dynamic 
between a vehicle (own, neighbor) and the vehicles in front 
and back, driving on the target lane [13]. This effectively 
builds a gap for finishing a lane change maneuver and has 
an impact on the decision for lane changing, see [10], [12],
[13], and [14]. The mentioned features, characterizing the 
vehicle state, were extended in [15] with the driver’s 
operation signals to enhance by hidden Markov models the 
classification of lane change maneuvers.  

In our recent work [13], [14] and for the results 
reported here, we have focused on the development of a 
solution for maneuver recognition and its deployment on a 
Linux based system emulating the automotive target 
platform, using commercially viable sensors, image 
processing and multi-sensor fusion. We use the commercial 
software HUGIN, allowing efficient BN modelling and 
automated c-code generation. All current and future 
developments are compared to our initially developed 
“Original (ORIG)” OOBN, which has shown promising 
results as described in [2]–[5]. Our latest work [14]
describes three statistical classifiers as deployed on the 
prototype vehicle as well as the planned dynamic extension 
into a Dynamic Bayesian Network (DBN). The DBN are 
now deployed on the vehicle and evaluated in highway 
drive and in statistical comparison to other static classifiers.
The main contribution of this work is the extension of all 
four classifiers with special evidence for better accuracy. 
The DBN deployment on the automotive target platform 
has been successfully tested in real highway driving.  

Fig. 1. Longitudinal relative dynamics between following and front 
vehicles, both moving on the same lane. Lateral relative dynamics  
towards the lane marking, when initiating a lane change maneuver. 
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Fig. 2. Maneuver recognition as a vehicle-vehicle relation between the 
own EGO-vehicle (red) and a neighbor OBJ-vehicle (blue)

The automotive target platform represents both a 
storage and an inference challenge. The requirement on 
automotive safety demands accuracy close to 100% for a 
prediction horizon of 1 second. Moreover, the solution 
should scale to the specification of the hardware 
restrictions of the target platform. It should meet the 
automotive requirements on computation time and memory 
space, which are strongly constrained by the electronic 
control unit. The quick development of situations over time 
requires an automatic system, capturing and analyzing 
massive data streams, under uncertainties, every 20 
milliseconds for several safety applications, resulting in 
0.15ms for maneuver recognition.  

This paper is organized as follows. Section II gives an 
overview of the used method, III – on efficient modeling, 
IV - on proper treatment of data uncertainties and their use 
for building of hypotheses on driving behavior for event 
(maneuver) recognition. The approach is outlined in section 
V, while VI describes the evaluation of classifiers. Section 
VII summarizes the results with outlook. 

II. METHOD FOR PROBABILISTIC REASONING

A. Bayesian network (BN) 

A Bayesian network BN:= (G, P) is defined as a directed 
acyclic graph G and P - a set of CPDs (conditional 
probability distributions) P(X | pa(X)) of a variable X
conditioned on its influence variables pa(X), [20]-[21]. The 
joint probability of a BN is computed by the Chain rule 
for BNs: 

P( X1 , …, Xn ) = Πi=1..n  P(Xi | pa(Xi))               (1)

The graph G=(V,L) contains nodes V (to represent random 
variables) and edges L to represent the conditional 
dependency relations between the nodes. A BN can be 
used as a knowledge representation to compute the 
probability P(X=x|e) given a set of observations e. The 
Bayesian theorem allows inverting the probability 
computations, i.e. 

P(X|Y) = P(Y|X)P(X) / P(Y)            (2) 
An object-oriented Bayesian network (OOBN) contains 

instance nodes in addition to the usual BN nodes. An 
instance node is an abstraction of a net fragment into a 
single unit (network class) [20]-[21]. Therefore, instance 
nodes can be used to represent different network classes as 
well as repetitive structures within other nets 
(encapsulation). Thus an OOBN can be viewed as a 
hierarchical (data/information fusion) model of a problem 
domain. Every layer in this hierarchy expresses another 
level of abstraction in the OOBN model. The modeling 
extensions in this work explore also dynamic Bayesian 
networks (DBN), which use a time series of observations 

for information fusion and inference [18]-[21]. In this 
work, we use OOBN and DBN to represent the extension 
for both the lateral and longitudinal relative dynamics. 
DBN combine repetitive BN structures as discrete time 
slices. They follow the 1st order Markov assumption, i.e., 
the future Xt+1 is independent on the past Xt-1 given the 
present Xt: (Xt+1 ┴ Xt-1 | Xt) together with the stationary 
assumption, that the transitional probability distributions 
do not change between the time slices:  

P(Xt+1 | Xt ) = P(Xt | Xt-1). 

III. OOBN FOR MANEUVER RECOGNITION

To recognize the maneuvers considering the relative 
vehicle-vehicle motion (Fig. 2), we have modeled them as 
states of variable MNVR(≡Maneuver of Pairs) at the top 
layer (Fig. 3, Fig. 4) of the OOBN [2]. The pairwise 
combination of vehicles’ maneuvers ensures scalability of 
the approach. It reduces the memory requirements and uses 
computation resources only for the actually present 
surrounding vehicles. The OOBN fuses in the hypotheses 
at the lowest level of abstraction (see Fig. 3) features under 
uncertainties (Fig. 5, Fig. 6), i.e. measured multi-sensor 
data and computed situation features.  

Fig. 3.  OOBN structure and layers for maneuver recognition 

Fig. 4. Class hierarchy of the OOBN for maneuver recognition between 
two vehicles (OBJ1 and OBJ2), expressed as lateral and longitudinal 

relative dynamics, including their safety (see Fig. 1) 
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IV. MODELING OF DATA AND DRIVING BEHAVIOR

A. Modeling of sensor data and its uncertainty 
The maneuver recognition represents a task of the type 

reasoning under uncertainties with heterogeneous data. 
These data are acquired from multi-sensors measurements 
as well as from thereof fused and computed (by physical 
models) situation features. All data have naturally 
inherited uncertainties. The data characterize a traffic 
situation and define the set of situation features for 
maneuver recognition. The data input is represented as 
variables in the OOBN to support the inference process by 
allowing the measured (or computed) values of the 
variables to be inserted as evidence. For discrete variables, 
to be able to distinguish between the states of deduced 
features and to deal with the uncertainties in the sensor 
signals [2], the measured signals are discretized in 
predefined partitions (Fig. 5). In general, the measured 
signal Smeasured ≡Sm is composed of its real (expected) 
value S_REAL ≡ Sexpected under measurement and its 
disturbance (sensor noise) Serr around the real value, i.e. Sm
= Sexpected + Serr. In many practical applications (and in our 
work), the sensor noise is assumed as a zero-mean 
Gaussian random process. Then, the disturbance is 
described by the signal variance Serr ≡ Sσ

2.

Fig. 5.  BN fragment for modeling of sensor’s uncertainties with 
a discrete MEASURED variable 

If the measurement instrument is not functioning 
properly (due to senor noise or fault), then the sensor-
reading (S_MEASURED ≡ Sm) and the real variable 
(S_REAL) under measurement do not need to be the same. 
This fact imposes the causal model structure as shown in 
Fig. 5, taking care of the uncertainties in the input data. 
The sensor-reading Sm of any measured variable is 
conditionally dependent on random changes in two 
variables: real value under measurement (S_REAL≡ Sµ)
and sensor fault (S_SIGMA≡ Sσ

2):

P(Sm | Sµ, Sσ
2) = N(Sµ, Sσ

2)   (3)

where N(Sµ,Sσ
2) denotes the Gaussian distribution with 

mean value S_REAL ≡ Sµ. Then, in principle, the 
probability distribution of the real value Sµ of the 
measured variable is inferred by equations (2) - (3), given 
the observation (evidence) from its sensor measurement Sm
and its sensor disturbance Sσ

2. The last is obtained from 
the sensor diagnostics by use of a Kalman filter. 

In the discrete case, the CPD of Sm, expressed as (3), is 
represented by a conditional probability table (CPT), while 
in the continuous case Sm is modeled by a continuous 
random variable with a linear continuous Gaussian (CG) 

conditional distribution function N(Sµ, Sσ
2). A BN with CG 

nodes is referred to as a Conditional Linear Gaussian BN. 
It induces a multivariate normal mixture density of the 
form:

P(∆) f(Γ) = ΠX∈∆ P(X | pa(X)) ΠX∈Γ f(X | pa(X)), 

where ∆ are the discrete and Γ are the continuous variables.  

The degree of uncertainty for a variable, which is 
computed from noisy sensor data measurements, is 
obtained as error estimation by variance calculus. For 
example, the uncertainty in velocity Δv and in distance 
measurement Δs directly affects the uncertainty of the 
computed time to reach a certain point at distance s with 
velocity v. The time is computed as a function of these two 
variables, i.e. 

p
. Its uncertainty value or its 

variance tσ2 ≡ δt is computed for each vehicle object by 
taking the partial derivative of the time function f(s, v):

To model the uncertainty in a variable, which has been 
computed from noisy sensor measurements, we use 
Normal (continuous linear Gaussian LCG) distribution. By 
analogy to (3), similar distribution holds for its conditional 
probability, which is expressed by (4)  

P(tcomputed | tµ , tσ
2 ) = N(tµ , tσ

2)                 (4)

and its causal model structure is shown in Fig. 6. Here, the 
computed variable tcomputed is denoted by an ellipse with a 
double line boarder. The root nodes - real value denoted as 
t_real ≡ tµ and the sensor noise denoted as t_sigma ≡ tσ

2 -
are modeled as discrete variables with uniform 
distributions for the purpose of independent treatment of 
the influence variables on the computed variable.

Fig. 6. BN fragment, modeling uncertainties in a continuous 
variable tcomputed, influenced by discrete variables tµ and tσ

2

Similar principle of error estimation can be applied to 
any computed variable of interest for the BN modelling. 
The computed uncertainties complete the set of situation 
features, used for maneuver recognition. 

In [5], we proposed a number of modelling approaches 
to meet the automotive requirements on RAM and ROM 
memory size, and on computation time. These included 
besides the continuous nodes, also the use of function 
nodes as an alternative modeling of the sigmoid growth of 
probability for the hypotheses nodes; the use of 
expressions to specify the conditional probability 
distributions (CPDs) compactly and a divide-and-conquer 
approach to update of probability. 
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B. Modeling of driving behavior (hypotheses)  
The lateral relative dynamics (Fig. 4) is inferred from the 
actual lateral movement of a vehicle towards the lane 
marking. It is fused from the set of hypotheses H1.1 ≡ 
{lateral evidence LE, actual movement trajectory TRAJ 
and free space FS, computed by the occupancy grid 
OCCGRID}. Here, the hypothesis LE fuses the vehicle’s 
lateral offset to the lane marking (O_LAT) and its lateral 
speed (V_LAT) as shown in Fig. 7. Its CPD is represented 
by a sigmoid function to expresses the growing probability 
for LE (and possible lane change) when the vehicle is 
coming closer to the lane marking (modeled by 
O_LAT_MEASURED) by growing lateral velocity 
(modeled by V_LAT_ MEASURED (see [2] and for 
modeling optimization with continuous variables - see [5]). 
By analogy, the hypotheses TRAJ fuses: lateral 
acceleration (A_LAT), gear angle (vehicle’s orientation in 
the lane) and the time-to-lane-crossing. For safety of lane 
change, H1.1 checks available free space by assessing the 
risk of simultaneous occupancy of surrounding target cells 
(OCCGRID). This free space is inferred based on the times 
to enter and to leave the occupancy cells, [2]-[4].

Fig. 7.  BN fragment modeling the hypothesis LE with discrete variables 
V_LAT_MEASURED and O_LAT_MEASURED. 

The longitudinal relative dynamics (Fig. 1, Fig. 4) is 
fused from the set of hypotheses H1.2 ≡ {longitudinal 
relative dynamics (RD) and its safety SAFE_RD}, see 
section III.A. In the Original OOBN the BN-hypothesis LE,
used for the evaluation of LMC (Fig. 3, Fig. 4), can 
recognize a maneuver only when the car approaches the 
lane marking. Hence, the intention of a driver to make a 
lane change cannot be detected with it. Therefore, we 
explore the longitudinal relative dynamics (Fig. 1) which is 
characterized by hypothesis “Relative Dynamics” 
(REL_DYN ≡ RD). Here we use the radar-measured 
features, characterizing the relation between a follower-
vehicle and its front-vehicle on the same lane. The radar 
provides additional advantage of a longer view-horizon (up 
to 200 m) than the camera (up to 60 m). Since the 
hypotheses REL_DYN is contributing to the recognition of
maneuver intention, it can be considered as “Maneuver 
Advice” and should be integrated in the higher abstraction 
OOBN layers, i.e. into the third layer in parallel with LMC 
and its output on “Maneuver Advice” further into the forth 
layer LC of the OOBN (Fig. 3, Fig. 4), since we use 
information on how fast the vehicles in front on the same 
lane are driving.  

First, we apply the model for handling of uncertainties 
in measurements (described in section IV. A) - see layer 1, 
Fig. 3. For simplicity, we will take two measured features 
(relative distance X_REL_MEAS and relative velocity 
V_REL_MEAS to the vehicle in front) and their variances 
�

2 to improve the maneuver recognition time performance, 
i.e. earlier as with hypotheses H1.1. The structure of the 
static BN-Model on relative dynamics is shown in Fig. 8. 

Fig. 8. Static BN-Model for hypothesis “Relative Dynamics”. Evidence 
nodes are coded with blue color; chance nodes – with yellow;        

decision hypothesis for maneuver L/R/F – with red border. 

At the next abstraction level: H1.1 contribute to the 
recognition of an event lane marking crossing by class 
LMC≡LANEMARKCROSS (where the classification node 
LMC is Boolean), which is reused at the next abstraction 
level for the recognition of LEFT and RIGHT lane marking 
crossing to infer on event LC≡lane change for each vehicle 
(OBJ1 and OBJ2). The OOBN model structure and 
parameters are based on domain knowledge and physical 
models, as described in details in [2]-[5],[14]. The initial 
OOBN parameterization has been specified qualitatively 
and quantitatively by use of expressions, like sigmoid 
functions or kinematics relations. The parameters have 
been initially hand tuned by domain experts to reflect 
expected lane change behavior for the conditional 
probability distributions of the hypotheses variables, which 
represent qualitatively a typical vehicle behavior at lateral 
and longitudinal relative dynamics with safety aspects.  

C. Free Space Model for Safety 
The CUTOUT and CUTIN maneuvers (Fig. 1, Fig. 2)

can be considered as a lateral relative dynamics motion, 
since they represent a vehicle, performing a lateral 
movement towards the lane marking and relative to 
neighbor vehicles. In addition to the lateral relative 
dynamics, the longitudinal relative dynamics becomes 
essential for earlier recognition of maneuver intentions on 
lane change. It assumes, the analyzed vehicle aims to keep 
certain comfortable speed during its highway drive.  It 
considers the longitudinal relative speed and relative 
distance to a vehicle driving in front on the same lane, Fig. 
1. The modeling principle of safety for the longitudinal 
relative dynamics is similar to the safety for the lateral 
dynamics, relative to the lane marking crossing (LMC), 
i.e., the hypothesis lateral Free Space (FS in [4]). For 
safety, the longitudinal relative dynamics requires the 
check of available free space on the target lane to finish a 
maneuver or the suitability of a gap between two neighbor 
vehicles. This is performed by evaluating the safety 
features for longitudinal relative dynamics: 
“SAFE_RD/LEFT or RIGHT” (Fig. 4). The driving praxis 
shows, that if a vehicle in front is slower, usually it is 
overtaken on the left, if free space is available (Fig. 1). On 
the other hand, when a vehicle intends to leave the faster 
moving lane, it is slowing to change to the most-right or to 
the highway exit lane. Therefore, to ensure safety, it is 
necessary to estimate two features: the relative velocity and 
time to collision with vehicles on the target lane. These
features are calculated as a relation to the nearest vehicles 
on the target lane, both behind and in front of the analyzed 
vehicle with a possible intention of a lane change. This 
safety mechanism is reflected in the fusion of the 
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mentioned features, which are calculated for the left and 
right neighbor lanes. Fig. 9 shows the BN fragment 
structure of the hypothesis “Safe_RD” for longitudinal 
relative dynamics. By analogy to the evaluation of the 
longitudinal relative dynamics to the front vehicle on the 
same lane ([13], [14]), a similar structure is used to model 
the relation to both the front and behind moving vehicle on 
the target lane (same fragment is used to evaluate both its 
left and right side). The “Safe_RD” output nodes represent 
the interface nodes at the next layer of abstraction 
(Maneuver Advice ≡ MA, Fig. 4).  

Fig. 9. Safe hypothesis (SRD) for longitudinal Relative Dynamics

The evidence features are modeling the measurements 
(denoted as *_MEAS) with their uncertainty (variance 
denoted as *_VAR) which are assumed to have a Gaussian 
distribution. The distributions of nodes 
(V_FRONT_REAL, TTC_FRONT_REAL, etc.) are 
inferred based on the evidence. Nodes SAFE_V_FRONT and 
SAFE_TTC_FRONT are fused as an OR-relation in node 
SAFE_FRONT, i.e., a lane change to the target lane is safe 
only if at least one of the nodes has high probability. Thus, 
it models the relation between the “FRONT” input variables 
and the safety ahead on the neighbor target lane of the 
considered front vehicle. The CPD of SAFE_BEHIND is 
parameterized by analogy to SAFE_FRONT. Node 
SAFE_RD (evaluating the gap) combines the results from 
SAFE_FRONT and SAFE_BEHIND and is implemented as 
an “AND-relation”, i.e. if both have a high probability for 
state “true”, SAFE_RD will have also high probability for 
“true”. However, if one of them is in state “false”, 
SAFE_RD will have a high probability for “false”.

D.  Dynamic Models for Earlier Recognition 

Here, we focus on the use of two-time slice dynamic 
Bayesian networks DBNs (2T-DBNs) to achieve earlier 
recognition of traffic maneuvers, see [14]. They are 
characterized by an initial model representing the initial 
joint distribution of the process and a transition probability 
distribution (TPD) representing a standard BN repeated 
over time. They satisfy both the first-order Markov 
assumption and the stationary assumption. Fig. 10 shows 
the graphical structure of a 2T-DBN model for the 
hypothesis LE, while Fig. 11 represents a DBN extension 
of hypothesis REL_DYN, with the hidden node 
AREL_����(�), which was added for purposes as explained 
below. The TPDs between the time slices t and t+1 are 
assumed conditional Gaussian N(µ,σ2). Here, since we do 
not have observations on the mean value µ, it is specified 
by physical models.  

LE_DBN (Fig. 10) is combining the real values of three 
lateral features: O��	_����(�), 
��	_����(�) and A��	_����(�).
When O��	_����(�) is steadily increasing and 
��	_����(�) is
high or increasing (requiring also A��	_����(�)), their 
combination clearly indicates that the vehicle is leaving its 
lane. Note, that in [2]-[3], A��	_���� was included in 
hypothesis Trajectory (TRAJ) and not as part of LE.  The 
TPDs for the LE-variables: O��	_����(�), 
��	_����(�) and
A��	_���� are defined as shown in (5)-(7):  

O��	_����(�) ~  �( O��	_����(�-1) + V��	_����(�-1) ·∆t ,  �O_LAT (�)
2 )               (5) 

 

��	_����(�) ~  �( 
��	_����(�-1) + A��	_����(�-1) ·∆t ,  �
_LAT (�)

2 )      (6) 
 

A��	_����(�) ~  �(A��	_����(�-1),  �A_LAT (�)
2 )                                                   (7) 

 

The time step ∆t is the cycle time, i.e., 42 ms or 60ms 
depending on the camera used. The variances σ2 are 
modeling the uncertainties of the variables. This dynamic 
extension incorporates the trend of real values, while their 
physics relations are represented as causal dependencies 
between time steps ∆t. By analogy are defined the TPDs 
for the REL_DYN features: distance XREL_����(�) and 
velocity 
REL_����(�) and the hidden variable relative 
acceleration AREL_����(�) .     

Fig. 10. LE_DBN: 2T-DBN structure for the hypothesis LE (Lateral 
Evidence) for lateral Relative Dynamics towards the lane marking 

Fig. 11. REL_DYN_DBN: The 2T-DBN structure for the hypothesis 
REL_DYN (Relative Dynamics) with A_REL_REAL as hidden node 

V. APPROACH

A. Combination of Methods 

Our approach combines several methods to meet the 
deployment requirements on accuracy, less memory and 
faster inference. For resolving of programming paradigms,
like efficient modelling and reuse of modeling fragments, 
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we use OOBNs for information fusion from dynamic 
and/or static fragments. The accuracy requirement is 
reached by adding “special evidence” as described in III.C.
Future study will also focus on parameters learning to 
further improve accuracy. In addition, to resolve the design 
paradigms for deployment on a prototype vehicle, i.e. to 
meet the requirements on computation time and memory, 
we have utilized parallelization of computations based on a 
divide-and-conquer strategy (D&C), [5], [14]. This D&C 
parallelization splits the OOBN model into fragments and 
uses the posterior distribution of output nodes from the 
lower hierarchical fragments as likelihood over the 
corresponding input node at the next level of OOBN 
hierarchy, see [17] for more details. 

B. Modeling of the logical OOBN layers:LMC,MA, Lane 
Change Maneuvers and Driving Maneuvers (MNVR) 

The network fragments, created to support the divide-
and-conquer strategy to probability update in OOBN (Fig. 
3, Fig. 4) are shown in Fig. 12 and Fig. 13. In Fig. 12.A), 
LANEMARKCROSS (LMC) is the object class for lateral
relative dynamics towards the lane marking. LMC 
represents the vehicle-to-lane-marking relation and is 
instantiated using the probabilities computed in the 
hypotheses TRAJ, LE, FS (OCCGRID for OBJ1 and 
OBJ2). In Fig. 12.B), Maneuver Advice (MA) is the object 
class fusing the longitudinal relative dynamics REL_DYN 
(RD) between two vehicles driving on the same lane, and 
for safety evaluation on the left or right neighbor lanes, the 
available free space (Safe_RD) to a front and back 
vehicles, building the gap for completing a lane change 
(Fig. 1). MA is instantiated using their probabilities.  

The event class LANECHANGE (LC) is recognized 
by fusing LMC and MA (Fig. 13). LC is instantiated by 
the probabilities, obtained from the hypothesis classes 
LMC towards left and right and from hypothesis class 
MA. The event class MNVR represents the vehicle-
vehicle-vehicle LC-relation (denoted QMVT with 9 states, 
from all possible Left/Right/Follow LC-combinations of 
two objects) together with their relative lane-position to 
each other (denoted as POSDESCR with states: left, right, 
front). It infers the recognition of predicted maneuver, 
after instantiation by the probabilities, obtained from the 
two object classes LC.

C. Improving Accuracy by Special Evidence 

Based on a performance analysis on sequences not 
included in the evaluation reported below, we have 
extended the OOBN models with measured/perceived 
variables representing Special Evidence. The evaluation 
has been performed with our statistical module and by 
additional visual examination. As typical for statistical 
classification, we use a confusion matrix to evaluate the 
classification results at each time step for all maneuver 
sequences. The corresponding maneuver state is classified 
(at each time step) as recognized (i.e. true positive TP, if 
corresponding to its reference data label) when its 
probability is bigger than 65%. This threshold value has 
been empirically derived in [4]. It has been derived from 
the confusion matrix and from a statistical evaluation of the 

probability of “false positives” for the Original OOBN ([4])
on sequences not included in the evaluation reported 
below. Recall that all six maneuvers (Fig. 2) are 
represented as a state of the MNVR variable, which has 
moreover one additional state for “DONTCARE” (i.e. pairs 
without any collision hazard). 

A)

B)

Fig. 12. Classes: LANEMARKCROSS (LMC) and Maneuver Advice (MA) 

A)

B)

Fig. 13. The object classes: LANECHANGE and MNVR 

We analyzed the results of the statisticsl evaluation and 
grouped the faults, based on causes with special attention to 
wrong classifications; and derived ideas for improvement 
of recognition performance for Lane-Follow and Object-
Follow situations. We identified some measured/percepted
features as “special evidence (SEi)”, which represent road 
topology and driving behavior in relation to other vehicles 
(which are present or not) on the same lane. These SEi
features extend the model of Fig. 13.B) and are modeled 
with five blue nodes, while their influence on LC – with the 
yellow nodes, see Fig. 14. Thus, they fuse the information 
for recognition of a lane change, where SE1 and SE2 
consider the lateral and longitudinal relation between each 
pair of vehicles.  

SE1: If one vehicle is approaching another vehicle 
moving on the most left (or most-right) lane, then no 
matter, if the longitudinal dynamics suggest LC to the left 
(or right) lane, this is not realizable due to natural lane 
boarders, i.e., there is no free space to execute any LC 
LEFT (or RIGHT) maneuver.  This is incorporated in the 

A
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road topology features solid lane markings:
SE1_LeftSolidMark, SE1_RightSolidMark. It reduces the 
number of false positives (FP/wrongly classified) for 

OBJCUTOUT and the number of false negative (FN/not 
recognized) for FOLLOW maneuvers by 36% (from 11 to 
7) even in the ORIG model.   

Fig. 14. Information fusion at level LC of the extended OOBN model, including “special evidence” nodes to reduce false positive

SE2: If a vehicle is driving without any vehicle in 
front of it (possible even due to reduced perception 
reliability or out of sensor reach), then it has no reason to 
change the lane, unless an obstacle has been detected. 
This is incorporated in the model (Fig. 14) by SE2 
OBJPresent (yes/no). This is represented by the logic 
rule: If No Front Car detected, then both lateral and 
longitudinal dynamics classes (Fig. 4) - LMC 
(LaneMarkCross) and REL_DYN - are set to Follow.           

SE3: Change of variable sign for lateral offset 
O_LAT. Due to the used coordinate system, the values of 
variables are positive only inside the current driving lane 
and change to negative, while changing to an adjacent 
lane. This is incorporated as features 
SE3Right_O_LAT_dSIGN and SE3Left_O_LAT_dSIGN
in the extended structure of the BNs, Fig. 14. The special 
evidence is present in the labeled data file and introduced 
in the models at the LC (Fig. 14) and similarly at the 
MNVR (Fig. 4) level.  

D. Deployed classifiers

To study the effect of different model configurations 
on recognition, we have defined three static classifiers 
(ORIG; STATTR; STAT) and one dynamic classifier 
DBN; see TABLE I.   

TABLE I. DEPLOYED CLASSIFIERS ON THE LINUX PLATFORM , FIG. 4

BN fragment

Classifier LE
(lateral 
relative 
dynamics)

TRAJ
(trajec
tory)

OCCGRID
OBJ1-OBJ2
(free space)

REL_DYN 
(longitudinal 
RD=relative 
dynamics)

SRD
(free 
space/
safety)

ORIG Y Y Y - -

STATTR Y Y Y Y Y

STAT Y - Y Y Y

DBN LE_DBN - Y RD_DBN Y

The ORIG classifier uses the Original OOBN (see 
[2]-[4]). “Y” shows which BN fragment is included in the 
corresponding classifier. All static classifiers use 
hypotheses LE and OCCGRID, while only ORIG and 
STATTR use TRAJ (Fig. 4).  The hypotheses “free space 
FS ={OCCGRID and SRD}” for the lateral and longitu-
dinal relative dynamic respectively (Fig. 4) remain static 
BN fragments for the purpose of satisfying the 
requirements on computation time and memory. The 
DBN fragments for the relative dynamics for the lateral 
and longitudinal motion are LE_DBN and 
REL_DYN_DBN. The developed static and DBN 
modelling fragments were generated as c-code and 
deployed by use of the divide-and-conquer (D&C) 
approach for probability update on the target Linux 
platform of the car, as described in [17]. 

VI. EVALUATION AND ANALYSIS

Data sets used in the evaluation: The dataset has been 
acquired while driving in typical highway traffic. The 
raw data amounts to Terabytes. They are acquired by 
radar and stereo camera, which are fused to obtain the 
data objects with their characteristic features.  In order to 
be able to analyze and use these data, they must be 
cleaned. The data preparation has involved: i) Visual 
examination of data quality for all collected sequences in 
the prototype vehicle; ii) Statistical evaluation of all 
wrongly classified as well as not recognized maneuvers; 
iii) Data labelling and generation. Steps ii) and iii) have 
been automated. As a result, we have a total of 336 
sequences consisting of 236 lane-change sequences and 
100 lane-follow sequences.  Quality measures of the 
recognition results have been selected for the 
performance evaluation of all developed classifiers.
They include: the confusion matrix for the relevant (lane 
change) and irrelevant (follow or not present in the data) 
maneuvers; precision, recall; time gain for earlier 
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recognition; and runtime performance of all classifiers. 
The statistical evaluation module establishes how big the 
time gain is relative to the labelled maneuver. The last is
defined by the actual moment of lane marking crossing 
(LMC) by the midpoint of the car front bumper. 

The confusion matrix for all deployed classifiers 
(TABLE I) as performing on all evaluated driving 
sequences is shown in TABLE II.  The BN fragment 
TRAJ increases the accuracy, but the used gear angle is 
difficult to measure. The modeled special evidence has 
been successfully tested to contribute with a reduction of 
false positives (FP), thus increasing the accuracy. This 
has improved the performance on the Linux platform for 
deployment on the prototype car. We have made a proof, 
based on the performance of the ORIG classifier, by 
using all sequences and the statistical evaluation module, 
that the recognition accuracy of OOBN is not affected by 
the D&C approach and its implementation. 

TABLE II. PERFORMANCE COMPARISON OF THE DEPLOYED 
CLASSIFIERS WITH “SPECIAL EVIDENCE” (INDEX  _SE). COLUMN NR.: 1:
TP OF OBJCUTIN; 2: TP OF OBJ CUTOUT; 3: TP OF EGOCUTIN; 4:

TP OF EGOCUTOUT; 5: TP (=AS LABELED); 6: FN (NOT RECOGNIZED);
7: FP (WRONG CLASSIFIED); 8: ALL (TP+FN) MANEUVERS

Classifier 1 2 3 4 5 6 7 8 precision recall

Label* 29 83 67 57 236 0 0 236

ORIG 25 82 67 57 231 5 11 236 95.5% 97.9%

ORIG_SE 25 82 67 57 231 5 7 236 97.1% 97.9%

DBN_SE 23 80 67 56 226 10 19 236 92.2% 95.8%

STAT_SE 23 76 67 56 222 14 13 236 94.5% 94.1%

STATTR_SE 25 82 67 56 230 6 16 236 93.5% 97.5%

TABLE III. SUMMARY OF EVALUATION RESULTS FOR TIME GAIN
WITH ALL DATA FOR ALL DEPLOYED CLASSIFIERS. 1: OBJCUTIN; 2:

OBJCUTOUT; 3: EGOCUTIN; 4: EGOCUTOUT. 
dt [s] 1 2 3 4 Avg. dt [s]

ORIG -0.9950 -1.0129 -1.1461 -1.1156 -1.0749

ORIG_SE -0.9979 -1.0129 -1.1936 -1.1945 -1.1089

DBN_SE -0.8943 -0.9956 -1.1186 -1.3184 -1.1077

STAT_SE -0.8977 -1.0161 -1.1192 -1.3092 -1.1089

STATTR_SE -1.0150 -1.1246 -1.1545 -1.3500 -1.1763

TABLE IV. RUNTIME PERFORMANCE

Deployed 
classifier

Avg. 
Runtime 
[ms]

Deployed 
classifier 
by parallel D&C

Avg.Run
time 
[ms]

Gain with 
parallel 
D&C [%]

ORIG 1.5989 D&C_ORIG 1.2508 21.8%

ORIG_SE 1.5989 D&C_ORIG_SE 1.0471 34.5% 

DBN_SE 6.7405 D&C_DBN_SE 4.061 39.8%

STAT_SE 1.9734 D&C_STAT_SE 1.4606 26%

STATTR_SE 2.3143 D&C_STATTR_SE 1.5422 33.4%

TABLE III. shows the time gain for all maneuver 
classes for vehicle pairs. The average time gain for all 
deployed classifiers is about 1 second ahead of LMC.
Moreover, dependent on the traffic situation and object 

perception, even earlier maneuver recognition is feasible. 
36 of the tested sequences show earlier recognition with 
time gains of 1.5s – 6.72s. Test drives in real highway 
confirm, that traffic scenarios with “longitudinal relative 
dynamics” are recognized as a “need for lane change” 
before a vehicle is initiating a maneuver due to the 
recognition of a slower moving vehicle in front on the 
same lane. Therefore, the recognition by DBN classifier 
(visualized in Fig.15-17 with blue arrow) is earlier than 
the one by ORIG (visualized with red arrow). Figure 15 
shows recognition of EGOCUTOUT, where DBN is 3.24s 
earlier than the actual lane marking crossing (LMC) and 
2.46s earlier than ORIG. The recognition of OBJCUTOUT 
(Fig. 16) is 4.62s earlier by DBN than LMC and 3.9s 
earlier than ORIG. The driving sequence with the best 
recognition performance is shown in Fig. 17, where 
OBJCUTIN maneuver is recognized by DBN 6.72s 
earlier than LMC and 5.88 s earlier than ORIG. 

The parallel D&C implementation has been deployed 
for all classifier alternatives (ORIG, STAT, STATTR, 
DBN, see TABLE I. ) on the automotive Linux platform 
for maneuver recognition. TABLE IV. shows between 
22% and 40% gain in runtime performance for all 
deployed classifiers (using c-code on the Linux 
platform) due to the parallel D&C approach with 
“special evidence SE”. A time performance of 1-4ms is 
still far from the target value of 0.15ms. One should note 
here, that these numbers are for the Linux prototype 
platform of the car and thus hardware dependent. The 
optimization of the parallel D&C method on a dedicated 
Linux computer allowed even better results with 
optimized time performance, coming very close to the 
initially set requirement of the target platform, see [17].

Fig. 15. Highway demonstration with REL_DYN showing the 
classifier performance for EGOCUTOUT: DBN is 3.24s earlier than 

actual LaneMarkingCrossing (LMC) and 2.46s - than ORIG. 
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Fig. 16. Highway demonstration with REL_DYN showing the 
classifier performance for OBJCUTOUT: DBN is 4.62s earlier than 

actual LMC and 3.9s earlier than ORIG. 

Fig. 17. Highway demonstration with REL_D YN showing the classifier 
performance for OBJCUTIN: DBN is 6.72 s earlier than actual LMC 

and 5.88 s earlier than ORIG 

VII. DISCUSSION OF RESULTS AND OUTLOOK

The Bayesian network has been designed and 
parameterized for lane change maneuvers. The 
advantage of our approach is that only measured features 
for lateral and longitudinal dynamics of the vehicles are 
necessary, without map data. The limitation is that lane 
markings are required to compute the features and some 

wrong classifications cannot be resolved for cases when 
the prediction horizon of a lane curvature does not reach 
the percepted front vehicle and thus the vehicle 
orientation inside the lane cannot be computed.  

The introduced “special evidence” reflects road 
topology and vehicles relations, thus improving the 
recognition accuracy of lane-follow and reducing the 
false positives of lane-change maneuvers. The solution 
has been successfully tested for all classifiers. With the 
system deployment on the prototype vehicle, we have 
collected more data, which will be further divided to use 
for testing, and for learning of models’ parameters of the 
lateral and longitudinal relative dynamics, together with 
their safety aspects. Here the hand tuned expressions will 
serve as an initial guess to improve further the 
recognition accuracy by use of machine learning 
techniques [16], which have shown promising results.

In addition, we have analyzed the effect of 
parallelization of computations based on divide-and-
conquer strategy (D&C). We describe in [17] the 
implemented parallel D&C realization, allowing 
resolving the requirements on computation time (0.15ms) 
and memory for deployment on a prototype vehicle. This 
is an important step towards a scalable solution, meeting 
the hardware constraints of the automotive target 
platform.  Future work will also focus on trend analysis 
for even more accurate and earlier maneuver recognition. 
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